
Spedn Documentation
Release 0.2.0

{o} Software

Feb 19, 2022

Getting Started:

1 Quick start guide 3

2 Understanding Script 5

3 Migration Guide 7

4 Syntax overview 9

5 Types 15

6 Operators 19

7 Functions 21

8 Command-line Interface 25

9 BCH-JS Integration 27

10 BITBOX Integration 33

11 Zero Conf Forfeits 39

12 ChainBet Protocol 41

13 Contributing 45

14 Sponsorship 47

15 Contract 49

i

ii

Spedn Documentation, Release 0.2.0

Spedn is a high level smart contracts language for Bitcoin Cash. It is designed for explicitness and safety:

• It is statically typed - detects many errors at compile time

• It is explicitly typed - no guessing what the expression is supposed to return

• It is purely-functional - free of side effects, the common source of bugs

• It has a familiar syntax resembling C# or Rust

Warning: Spedn is an experimental tool. It is not recommended to be used on mainnet yet. Or at least do a lot of
tests on testnet first.

Getting Started: 1

Spedn Documentation, Release 0.2.0

2 Getting Started:

CHAPTER 1

Quick start guide

1.1 Build from sources

1. Intsall Haskell Tool Stack.

2. Download Spedn sources.

$ git clone https://bitbucket.org/o-studio/spedn.git

3. Build and install Spedn.

$ cd spedn/spedn
$ stack install

1.2 Installation from npm

Alternatively, you can install a JavaScript version from npmjs repository:

$ npm i -g @spedn/cli

1.3 Your first contract

Create a file mycontract.spedn with a following content:

contract ExpiringTip(Ripemd160 alice, Ripemd160 bob) {

challenge receive(Sig sig, PubKey pubKey) {
verify hash160(pubKey) == bob;
verify checkSig(sig, pubKey);

(continues on next page)

3

https://docs.haskellstack.org/en/stable/README/#how-to-install
https://bitbucket.org/o-studio/spedn/src

Spedn Documentation, Release 0.2.0

(continued from previous page)

}

challenge revoke(Sig sig, PubKey pubKey) {
verify checkSequence(7d);
verify hash160(pubKey) == alice;
verify checkSig(sig, pubKey);

}
}

Compile with command:

$ spedn compile -c mycontract.spedn

You should get a compiled contract template similar to this:

<alice> <bob> 2 PICK TRUE EQUAL IF 3 PICK HASH160 OVER EQUALVERIFY (...)

4 Chapter 1. Quick start guide

CHAPTER 2

Understanding Script

Before developing contracts with Spedn it is worth understanding what they are compiled to and how Bitcoin Cash
transactions internally work.

2.1 There is no spoon. . .

From a user perspective it’s convenient to perceive a Bitcoin Cash address as a kind of account with a balance. But
this is just a nice abstraction over a mechanism that works in slightly more complicated way.

There is no account. Every transaction contains inputs and outputs. An output consists of an amount of bitcoins and a
script (often called scriptPubKey) specifying some spending conditions for that amount. An input is a reference
to some output of a previous transaction and some script (called scriptSig) satisfying the spending condition from
scriptPubKey. In a typical transaction, scriptPubKey contains a public key of a coin owner and scriptSig
contains a signature matching that public key - hence the names. An output that is not yet referenced by any other
transaction is called Unspent Transaction Output (UTXO).

A UTXO can be perceived as a lockbox containing a single coin.

An address is a user readable representation of a standard scriptPubKey. There can be many UTXOs with the same
address.

2.2 Kinds of boxes

You can spot two kinds of addresses in Bitcoin Cash:

2.2.1 Pay To Public Key Hash (P2PKH)

This is an “ordinary” address representing a very simple script that checks two condidtions:

• If the public key provided in scriptSig matches the hash in scriptPubKey when hashed with SHA-256 and then
RIPEMD-160.

5

Spedn Documentation, Release 0.2.0

• If the signature provided in scriptSig is valid for that key.

2.2.2 Pay To Script Hash (P2SH)

This is a “smart contract” address. Instead of public key hash it cointains a hash of an entire script that is called a
redeem script. The scriptSig is supposed to provide the actual script that matches this hash and arguments to it.

2.3 Making fancy boxes

All those scripts are bytecode that run in a stack machine. A human readable representation (assembly language) of
this bytecode is called. . . Script. Script is a FORTH-like, stack oriented language containing numerous opcodes, some
generic (like OP_ADD), some very Bitcoin-specific (like OP_CHECKSIG). It intentionally lacks support for recursion
what guarantees that all scripts finish (and even do so in deterministic time).

Writing scripts in Script is quite hard. This is why Spedn was created. It’s a high level language that compiles to
Script. Contracts written in Spedn represent redeem scripts for P2SH addresses.

6 Chapter 2. Understanding Script

CHAPTER 3

Migration Guide

3.1 Migrationg from v0.3 to v0.3.1

Javascript SDK in this release has been decoupled into several smaller components. The Compiler stays in SDK
library which moved to @spedn/sdk. However, you won’t need it anymore if you just want to use already compiled
contracts. In that case, install RTS (Runtime System) library with backend of choice:

• use @spedn/rts-bchjs if you want to build the app on top of BCH-JS.

• use @spedn/rts-bitbox if you want to build the app on top of BITBOX-SDK.

To use RTS, import apropriate adapter:

import { BchjsRts } from "@spedn/rts-bchjs";
import BCHJS from "@chris.troutner/bch-js";

const rts = new BchjsRts("mainnet")
const testRts = new BchjsRts("testnet", new BCHJS({ restURL: "https://tapi.fullstack.
→˓cash/v3/" }));

To allow RTS to work without compiler, the Portable format has been introduced. When using the CLI, you can
request the compiler to output it with -f portable switch. When using the Spedn service from SDK, this format
will be returned by default. To turn this JSON into contract classes as before, use rts.load(portable).

const mod = await using(new Spedn(), async compiler => await compiler.compileFile("./
→˓BlindEscrow.spedn"));
fs.writeFileSync("./blind_escrow.json", JSON.stringify(mod));
// ...
const { BlindEscrow } = rts.load(JSON.parse(fs.readFileSync("./blind_escrow.json");

You’ll also need RTS to create TxBuilder:

import { TxBuilder } from "@spedn/rts";

const builder = new TxBuilder(rts);

7

https://bchjs.fullstack.cash/
https://developer.bitcoin.com/bitbox

Spedn Documentation, Release 0.2.0

Static factory methods in P2PKH class can now be found in P2PKHFactory, that requires RTS:

import { P2PKHFactory } from "@spedn/rts";

const factory = new P2PKHFactory(rts);
const addr = factory.fromKeyPair(key);

3.2 Migrating from v0.1 to v0.2

There are several syntax changes that might cause your contract compiled for v0.1 version of Spedn doesn’t compile
anymore. Here’s how to fix it:

1. The bin type has been replced by [byte]. Just replace all occurences. This will be good enough but consider
being more strict by providing the exact size of the byte array, like [byte;5].

2. Tuple destructuring has a new syntax. Instead of bin [a, b], use ([byte] a, [byte] b). As before,
consider being more strict, ex. ([byte;4] a, [byte;28] b).

3. With the November 2019 BCH protcol upgrade, OP_CHECKMULTISIG started to support Schnorr signatures
but using this requires providing a checkbits argument instead of null dummy. Spedn 0.2 supports this mode
exclusively so you’ll have to add a checkbits argument.

Code:

challenge(Sig a, Sig b) {
verify checkMultiSig([a, b], [k1, k2, k3]);

}

becomes:

challenge([bit;3] checkbits, Sig a, Sig b) {
verify checkMultiSig(checkbits, [a, b], [k1, k2, k3]);

}

4. A single code file can now contain multiple contracts therefore the compiler in Spedn TypeScript SDK returns
a new data structure called module instead of a single contract template. Instead of const MyContract =
await compiler.compileFile("./MyContract.spedn"); use const { MyContract } =
await compiler.compileFile("./MyContract.spedn");.

8 Chapter 3. Migration Guide

CHAPTER 4

Syntax overview

4.1 Module

A single code file is called a module. It can contain any number of type definitions and contract templates. Typed
should be defined first, followed by contract templates. Single and multiline comments are supported with // and /*
*/ delimiters respectively.

4.2 Contract Templates

A contract template in Spedn represents a template for generating a P2SH address and corresponding redeem script. It
can be parametrized. Contract parameters have to be specified to instantiate it, that is - to generate a particular contract
with an address. Contract name should start with a capital letter.

You can perceive a contract template as a specification of a pin tumbler lock mechanism while a contract is a particular
lock and parameters are pin lengths in it.

Syntax:

contract ContractName ([type paramName [, . . .]]) { }

Example:

contract SomeContract(Ripemd160 pubKeyHash, int x) {
// challenges

}

4.3 Challenges

A challenge is a set of conditions that have to be met to redeem a coin locked in a contract. Challenges specify
arguments that will be expected to be pushed in scriptSig when redeeming the coin. A contract must contain at
least one challenge and a challenge must define at least one argument. Challenges must have unique names.

9

Spedn Documentation, Release 0.2.0

A challenge introduces a lexical scope so two different challenges can define an argument with the same name.

When redeeming a coin, a redeemer must choose one of the challenges and satisfy its conditions. On the assemby
level its done by pushing challenge’s number (indexed from 1) after arguments. If there is only one challenge, only
arguments are pushed.

You can perceive a challenge as a keyhole in a lock and arguments as keys.

Syntax:

challenge name (type argName [, . . .] **) statement **

Example:

challenge someChallenge(PubKey pubKey, Sig signature) {
// statements...

}

4.4 Statements

A challenge can contain any number of statements. To be precise - it contains a single statement but this can be a block
statement which can contain any number of statements.

There are the following kinds of statements:

4.4.1 Verification

The most important statement and often the only one needed. It evaluates an expression and fails the script if the result
is false.

Syntax:

verify expr ;

Example:

verify hash1 == hash2;

4.4.2 Variable binding

You can define a local variable that will be accessible down in the same lexical scope and nested scopes.

Syntax:

type name = expr ;

Example:

int a = b + c;

There is also a possibility to deconstruct a tuple into many variables (like in case of using the split operator). If some
of the results is unnecessary, you can ignore them with a low dash operator.

Syntax:

10 Chapter 4. Syntax overview

Spedn Documentation, Release 0.2.0

(type1 name1 , type2 name2) = expr1 @ expr2 ;

(_, type2 name2) = expr1 @ expr2 ;

(type name , _) = expr1 @ expr2 ;

Example:

([byte;4] prefix, _) = secret @ 4;

4.4.3 Conditional

You can conditionaly execute a branch of code. A branch introduces a new lexical scope and it can be a verification,
block or another conditional.

Syntax:

if (condition) statement [else statement]

Example:

if (num % 2 == 1)
verify checkSig(sig, alice);

else
verify checkSig(sig, bob);

4.4.4 Fail

To immediately fail the execution just type fail; - it will compile to OP_RETURN.

if (num % 2 = 1)
verify checkSig(sig, alice);

else
fail;

4.4.5 Separator

The separator; statement compiles to OP_CODESEPARATOR. It affects the way the tx preimage used in
checkSig is generated so that only the code after the separator is included. Might by useful for reducing the
size of a preimage used in covenant-style contracts.

4.4.6 Block

A block is a statement that groups several statements for sequential execution. A block introduces a lexical scope. The
last statement must be a verification or conditional.

Syntax:

{ [statements. . .] }

Example:

4.4. Statements 11

Spedn Documentation, Release 0.2.0

if (num % 2 = 1) {
verify checkSig(sig, alice);

} else {
verify checkSig(sig, bob);
verify checkSequence(5d);

}

4.4.7 Loop

There are no loops, it’s Bitcoin.

4.5 Type Definitions

You can defile a type alias. The name of the new type must start with a capital letter.

Syntax:

type Name = other type ;

Example:

type Message = [byte;7];

Once defined you can declare variables of the new type and use a type constructor for casting a raw type to an alias.

Message msg = Message("abcdefg");

4.6 Lexical scopes

Spedn creates common, nested lexical scopes for parameters, arguments, variables and functions. There can be no 2
identical names within the same scope. Also - name shadowing is prohibited so a nested scope cannot redefine a name
present in its parent scope.

There are following scopes in the nesting order:

• Module scope - contains predefined functions and type definitions

• Contract scope - introduced by the contract, contains contract parameters

• Challenge scope - introduced by the challenge, contains challenge arguments and local variables

• Local scope - introduced by if/else/block statements, contains local variables

Exhaustive example:

// a global scope, names like checkSig, min, max are reserved.

type Msg = [byte;15];

// contract scope begins
contract X(int a, int b) { // names a, b are defined

// challenge scope begins
challenge a(// it's OK for the challenge to be named a because challenge names

→˓don't occupy the name table.
(continues on next page)

12 Chapter 4. Syntax overview

Spedn Documentation, Release 0.2.0

(continued from previous page)

int c // name c is defined
/* int a // BAD - already defined in contract scope */)

{
verify a >= b;
/* verify a == d // BAD - d is not yet defined */
int d = a + b; // name d is defined
if (d > 0)
// if scope begins
{

int e = d % c;
verify e == 0;

}
// if scope ends; e is gone.
else
// else scope begins

verify a == b;
// else scope ends
/* verify e == 1 // BAD - e is gone */

}
// challenge scope ends; c, d are gone

// challenge scope begins
challenge b(int c, int d) // names c, d are defined
{

verify c == d;
}
// challenge scope ends; c, d are gone

}
// contract scope ends; a, b are gone

4.6. Lexical scopes 13

Spedn Documentation, Release 0.2.0

14 Chapter 4. Syntax overview

CHAPTER 5

Types

5.1 Basic Types

Basic types reflect types Script operates on.

• bool - a boolean value. Can be either true or false. verify and if statements expect an expression
returning this type.

• bit - a binary flag. Only arrays of this type can be created, see below. Array of bits is expected by
checkMultiSig function.

• int - a 32-bit signed integer. Literals of this type can be specified in dec or hex.

int a = -1234;
int b = 0xff00i; // notice `i` suffix

• byte - a single byte. Literals of this type are specified in hex (with 0x prefix) or as UTF-8 strings (in doubel
quotes).

byte x = 0x11;
byte y = "a";

5.2 Arrays

Arrays are series of values with the same type.

Overall syntax of an array type is:

[element_type ; size]

In case of bit and byte the array will mean a single byte vector on the stack in Bitcoin Virtual Machine terms. In
case of other types the array will mean a number of stack elements with element 0 on the bottom. You can create bit
array literals with 0b prefix, byte arrays with 0x prefix or double quotes and any other arrays with comma-separated
lists in brackets.

15

Spedn Documentation, Release 0.2.0

[bit;4] checkbits = 0b1011;
[byte;3] a = 0x11ab33;
[byte; 3] b = "abc";
[int;5] c = [1, 2, 3, 4, 5];
[[byte;2];3] d = ["ab", "cd", "ef"];

It is also possible to define a byte list if the array size is unknown at the compile time.

[byte] str = expr;

A byte array can be implicitly casted to a byte list but not the other way. It is recommended though to use explicit
sizes as much as possible to leverage the static type checking of the size.

([byte] left, [byte] right) = expr @ 3; // okay
([byte;3] left, [byte] right) = expr @ 3; // better
([byte;2] left, [byte] right) = expr @ 3; // type error

With an exception of bit arrays the array elements can be accessed by an index starting from 0.

[byte] arr = "abcd"
byte c = arr[2];
byte x = arr[(i + 1) % 4];

5.3 Tuples

Tuples are similar to arrays but the values can vary in types.

Overall syntax of a tuple type is:

(type1 , type2 [, . . .])

You can create tuple literals with a comma separated list of values in parentheses. Tuples can be deconstructed into
separate variables with a deconstructing assgnment syntax:

(type1 name1 , type2 name2 [, . . .]) = expr ;

Elements of 2-tuples can be extracted with fst and snd functions.

Examples:

([byte;4], [byte]) tuple1 = x @ 4;
([byte;4] left, [byte] right) = tuple1;
[byte;4] first = fst(tuple1);
[byte] second = snd(tuple1);
(int, [byte], [bit;3]) tuple2 = (a, b, c);

5.4 Domain-Spcecific Types

To increase safety, Spedn introduces meaningful types that help with catching semantic errors at compile time.

5.4.1 Numeric types

These types add meaning to a raw int. They must be explicitly casted from int with a type constructor. They cannot
be casted back to int.

16 Chapter 5. Types

Spedn Documentation, Release 0.2.0

• Time - represents an absolute time. Can be expressed as a Unix Timestamp or a Block Height and variously
defined.

Time x = `2018-10-13 21:37:00`; // defined with a time literal
Time y = TimeStamp(1539466620); // conversion from `int` interpreted as Unix
→˓Timestamp
Time z = TimeStamp(584834); // conversion from `int` interpreted as Block
→˓Height

• TimeSpan - represents a relative time period. Can be expressed as a number of blocks or 512-seconds periods.

TimeSpan x = 1d 2h 3m 4s; // Time units literal. Be awre that the number
→˓will be rounded down to full 512s periods
TimeSpan y = 10b; // Blocks literal.
TimeSpan z = Blocks(10); // Conversion from `int`

5.4.2 Binary types

These types add meaning to a raw byte arrays. They can be implicitly casted to [byte]. They must be explicitly
casted from [byte] with a type constructor.

• PubKey - represents a public key.

PubKey alice = PubKey(0x11223344556677889900aabbccddeeff);

• Sig - represents a tx signature (which can be checked with checkSig).

Sig alice = Sig(0x11223344556677889900aabbccddeeff);
verify checkSig(alice, alicePubKey);

• DataSig - represents a data signature (which can be checked with checkDataSig).

DataSig alice = DataSig(0x11223344556677889900aabbccddee);
verify checkDataSig(alice, preimageHash, alicePubKey);

• Ripemd160 - represents a result of RIPEMD-160 hash.

Ripemd160 h = hash160(pubKey);

• Sha1 - represents a result of SHA-1 hash.

Sha1 x = sha1(secret);

• Sha256 - represents a result of SHA-256 hash.

Sha256 x = hash256(secret);

• Preimage - represents a raw transaction preimage. You can break it down to components with parse function.

Preimage preimage = Preimage(0xaabc45......);
TxState tx = parse(preimage);

• TxState - a 10-tuple containing preimage components. They can be accessed by tuple deconstruction.

1. NVersion - nVersion of the transaction (4-byte little endian)

2. Sha256 - hashPrevouts (32-byte hash)

5.4. Domain-Spcecific Types 17

Spedn Documentation, Release 0.2.0

3. Sha256 - hashSequence (32-byte hash)

4. Outpoint - outpoint (32-byte hash + 4-byte little endian)

5. ScriptCode - scriptCode of the input (serialized as scripts inside CTxOuts)

6. Value - value of the output spent by this input (8-byte little endian)

7. NSequence - nSequence of the input (4-byte little endian)

8. Sha256 - hashOutputs (32-byte hash)

9. NLocktime - nLocktime of the transaction (4-byte little endian)

10. Sighash - sighash type of the signature (4-byte little endian)

(NVersion v, Sha256 hp, Sha256 hs, Outpoint o,
ScriptCode code, Value val,
NSequence ns, Sha256 ho, NLocktime l, Sighash sh) = parse(preimage)

Alternatively you can use functions extrancing a single component.

NVersion v = nVesrion(preimage);
Sha256 hp = hashPrevouts(preimage);
Sha256 hs = hashSequence(preimage);
Outpoint o = outpoint(preimage);
ScriptCode code = scriptCode(preimage);
Value val = value(preimage);
NSequence s = nSequence(preimage);
Sha256 ho = hashOutputs(preimage);
NLocktime l = nLocktime(preimage);
Sighash sh = sighash(preimage);

5.4.3 Hidden types

These are types that can appear in expressions but you cannot define variables of them.

• Verification - almost like bool but the only thing you can do with it is to pass it to verify. This is a return
type of checkLockTime and checkSequence functions:

verify checkSequence(8b);

5.5 Custom types

You can defile a type alias. The name of the new type must start with a capital letter. The types have to be defined
before contracts in the code file. Syntax is:

type Name = other type ;

Once defined you can declare variables of the new type and use a type constructor for casting a raw type to an alias. It
behaves the same way as constructors of of domain-specific types described in the previous sections. Actually, all of
these are defined as type aliases internally.

type Message = [byte;42];
...
Message msg = Message(str);

18 Chapter 5. Types

CHAPTER 6

Operators

Precedence Operator Description Associativity
1 -a Unary minus right to left
1 !a Logical NOT right to left
2 a / b Integer division left to right
2 a % b Modulo left to right
3 a + b Integer addition left to right
3 a - b Integer subtraction left to right
4 a . b bytes arrays concatenation left to right
5 a < b Less than left to right
5 a <= b Less than or equal left to right
5 a > b Greater than left to right
5 a >= b Greater than or equal left to right
6 a == b Equal left to right
6 a != b Not equal left to right
6 a === b Numeric and equal left to right
6 a !== b Numeric and not equal left to right
7 a & b Bitwise AND left to right
8 a ^ b Bitwise XOR left to right
9 a | b Bitwise OR left to right
10 a && b Bolean AND

Note: Both a and b are always evaluated.
left to right

11 a || b Boolean OR
Note: Both a and b are always evaluated.

left to right

12 a @ b Split bytes array a at position b. none
13 cond ? t

: f
If cond is true returns t, otherwise f. right to left

19

Spedn Documentation, Release 0.2.0

20 Chapter 6. Operators

CHAPTER 7

Functions

7.1 Math Functions

• int abs(int a)

Returns an absolute value of the argument.

• int min(int a, int b)

Returns the smaller argument.

• int max(int a, int b)

Returns the larger argument.

• bool within(int x, int min, int max)

Returns true if x >= min && x < max.

7.2 Hashing Functions

• Ripemd160 ripemd160([byte] bytes)

Returns a RIPEMD-160 hash of the argument.

• Sha1 sha1([byte] bytes)

Returns a SHA-1 hash of the argument.

• Sha256 sha256([byte] bytes)

Returns a SHA-256 hash of the argument.

• Ripemd160 hash160([byte] bytes)

Returns RIPEMD-160 hash of SHA-256 hash of the argument.

21

Spedn Documentation, Release 0.2.0

• Sha256 hash256([byte] bytes)

Returns double SHA-256 hash of the argument.

7.3 Cryptographic Checks

• bool checkSig(Sig sig, PubKey pk)

Validates a transaction signature sig againnst a public key pk.

• bool checkMultiSig(List<Sig> sigs, List<PubKey> pks)

Validates the set of signatures against the set of public keys.

• bool checkDataSig(DataSig sig, [byte] msg, PubKey pk)

Validates a signature sig of an arbitrary message msg against a public key pk.

7.4 Timelock Checks

• Verification checkLockTime(Time t)

Validates whether the spending transaction occurs after time t, expressed as a block height or a timestamp.

• Verification checkSequence(TimeSpan duration)

Validates whether the spending transaction happens after duration relative to the locking transaction, ex-
pressed as a number of blocks or number of 512 seconds-long periods.

7.5 Array Operations

• [byte] num2bin(int num, int size)

Converts a number num into a bytes list. Bytes remain little-endian and are padded with zeros up to size.

• [byte] Bytes(int num)

Reinterprets a number num as a bytes list without affecting the byte order or size.

• int bin2num([byte] data)

Converts a bytes list data to an integer. The list is treated as little-endian. The result is minimally encoded.

• [byte] reverseBytes([byte] data)

[byte;n] reverseBytes([byte;n] data)

Returns an array with bytes in reverse order.

[byte;3] rev = reverseBytes(0xabcdef);
// rev == 0xefcdab

• int size([byte] data)

Returns the length of data.

• int checkSize([byte; x] data)

Returns true it the runtime size of the byte array matches the declared size x.

22 Chapter 7. Functions

Spedn Documentation, Release 0.2.0

• bin fst([bin, bin] data)

Returns the first element of a tuple (result of @ operator).

[byte] left = fst(0xaabbccdd @ 2);
// left == 0xaabb

• bin snd([bin, bin] data)

Returns the second element of a tuple (result of @ operator).

[byte] right = snd(0xaabbccdd @ 2);
// right == 0xccdd

• DataSig toDataSig(Sig data)

Converts a signature suitable for checkSig function (with a sighash flag) to a signature suitable for
checkDataSig function (without a sighash flag).

verify checkSig(sig, pubKey);
verify checkDataSig(toDataSig(sig), preimageHash, pubKey);

7.6 Covenant Introspection

• TxState parse(Preimage p)

Returns a 10-tuple of preimage components.

• NVersion nVersion(Preimage p)

Returns nVersion of the transaction (4-byte little endian).

• Sha256 hashPrevouts(Preimage p)

Returns hashPrevouts.

• Sha256 hashSequence(Preimage p)

Returns hashSequence.

• Outpoint outpoint(Preimage p)

Returns outpoint (32-byte hash + 4-byte little endian).

• ScriptCode scriptCode(Preimage p)

Returns scriptCode of the input (serialized as scripts inside CTxOuts).

• Value value(Preimage p)

Returns value of the output spent by this input (8-byte little endian).

• NSequence nSequence(Preimage p)

Returns nSequence of the input (4-byte little endian).

• Sha256 hashOutputs(Preimage p)

Returns hashOutputs.

• NLocktime nLocktime(Preimage p)

Returns nLocktime of the transaction.

7.6. Covenant Introspection 23

Spedn Documentation, Release 0.2.0

• Sighash sighash(Preimage p)

Returns sighash type of the signature (4-byte little endian).

7.7 Type Constructors

• PubKey PubKey(bin data)

• Ripemd160 Ripemd160(bin data)

• Sha1 Sha1(bin data)

• Sha256 Sha256(bin data)

• Sig Sig(bin data)

• DataSig DataSig(bin data)

• Time TimeStamp(int timestamp)

• Time TimeStamp(int blockHeight)

• TimeSpan Blocks(int number)

24 Chapter 7. Functions

CHAPTER 8

Command-line Interface

The general syntax is:

$ spedn COMMAND args

8.1 Compiling

To compile a contract to opcodes, use:

$ spedn compile -c MyContract.spedn

If the contract contains parameters, a template with placeholders will be generated. To instantiate the contract with
particular parameter values, provide them as key=value pairs after --. For example, assuming MyContract has
alicePHK parameter of type Ripemd160 and delay parameter of type TimeSpan, you can use the following:

$ spedn compile -c MyContract.spedn --
→˓alicePKH=0xb08f0f859f53873e8f02f6c0a8290a53e76a2e0a delay=1d1h

To compile a contract to a hex representation, use:

$ spedn compile -f hex -c MyContract.spedn --
→˓alicePKH=0xb08f0f859f53873e8f02f6c0a8290a53e76a2e0a delay=1d1h

Note that in this case, the contract must be fully instantiated (all parameters values must be provided).

8.2 Portable

Spedn defines custom Script representation called Portable. It’s a JSON-based format containing both opcodes and
necessary reflection data allowing it to be instantiated in runtime libraries.

To compile a contract to Spedn Portable format, use:

25

Spedn Documentation, Release 0.2.0

$ spedn compile -f portable -c MyContract.spedn > MyCompiledContract.json

26 Chapter 8. Command-line Interface

CHAPTER 9

BCH-JS Integration

Spedn is available for NodeJS developers as set of libraries extending capabilities of BCH-JS or other libraries. Type-
Script type definitions are provided out of the box.

Spedn provides 3 components installed separately:

• CLI (Command Line Interface) - allows to compile Spedn contracts.

• RTS (Runtime System) - allows to use compiled contracts in your app.

• SDK (Software Development Kit) - allows to compile Spedn contracts in your app.

9.1 Installation

To install Spedn RTS with BITBOX integration in your JS project, type:

npm i @spedn/rts-bchjs
or
yarn add @spedn/rts-bchjs

To install Spedn SDK in your JS project, type:

npm i @spedn/sdk
or
yarn add @spedn/sdk

NodeJS v11 or newer is required for SDK. You can also use v10 but then Worker Threads feature has to be explicitly
enabled by --experimental-worker flag.

9.2 Compiler service

Spedn compiler runs as a service in a worker thread that you can start, use and dispose with Spedn class.

27

https://nodejs.org/
https://bchjs.fullstack.cash/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://nodejs.org/docs/latest-v12.x/api/worker_threads.html

Spedn Documentation, Release 0.2.0

import { Spedn } from "@spedn/sdk";

async function main() {

const compiler = new Spedn();
/* use compiler */
compiler.dispose();

}
main();

Instead of manually disposing the service you can also wrap the code in the using function inspired by some lan-
guages, which guarantees automatic disposal of a resource also in case of exceptions. It can also return a value

import { Spedn, using } from "@spedn/sdk";

async main() {

await using(new Spedn(), async compiler => {
/* use compiler */

});

}
main();

9.3 Runtime

Spedn RTS provides a way to interact with compiled smart contracts and with the blockchain via an adapter of an
external library, in this case - BCH-JS.

You can use the default BCHJS instance for mainnet or provide a customized one.

import { BchjsRts } from "@spedn/rts-bchjs";
import BCHJS from "@chris.troutner/bch-js";

const rts = new BchjsRts("mainnet");
const testRts = new BchjsRts("testnet", new BCHJS({ restURL: "https://tapi.fullstack.
→˓cash/v3/" }));

9.4 Compiling modules

To compile a source file use compileFile method, optionally providing an rts. To compile source code in a string,
use compileCode.

const BlindEscrowPortableModule = await compiler.compileFile("./BlindEscrow.spedn");

const { ExpiringTip } = await compiler.compileCode(::`
contract ExpiringTip(Ripemd160 alice, Ripemd160 bob) {

challenge receive(Sig sig, PubKey pubKey) {
verify hash160(pubKey) == bob;
verify checkSig(sig, pubKey);

}

(continues on next page)

28 Chapter 9. BCH-JS Integration

Spedn Documentation, Release 0.2.0

(continued from previous page)

challenge revoke(Sig sig, PubKey pubKey) {
verify checkSequence(7d);
verify hash160(pubKey) == alice;
verify checkSig(sig, pubKey);

}
}

`, rts);

The output of those methods depends on whether you provided RTS or not. If so, you’ll get an activated module
containing smart contract classes ready to instantiate. Static field params in the class describes what parameters are
required to instantiate it.

console.log(ExpiringTip.params);
// Object {alice: "Ripemd160", bob: "Ripemd160"}

If RTS is not provided, the method returns a portable module that can be saved to a JSON file or activated later.

import { readFileSync, writeFileSync } from "fs";

writeFileSync("blind_escrow.json", JSON.stringify(BlindEscrowPortableModule));

const mod = rts.load(BlindEscrowPortableModule);

9.5 Instantiating contracts

To instantiate the template, just create an object of the contract class, providing parameters values. Parameters are
passed as an object literal explicitly assigning values by names. Values of bool and int Spedn type can be passed
as ordinary JS booleans and numbers. Time and TimeSpan are also passed as numbers (see BIP65 and BIP112 for
value interpretation details). All the other types should be passed as JS Buffer.

In case of ExpiringTip you’ll need 2 public keys which you can generate with BCH-JS.

import BCHJS from "@chris.troutner/bch-js";

const bchjs = new BCHJS({ restURL: "https://tapi.fullstack.cash/v3/" });
const mnemonic = "draw parade crater busy book swim soldier tragic exit feel top civil
→˓";
const wallet = bchjs.HDNode.fromSeed(await bchjs.Mnemonic.toSeed(mnemonic), "testnet
→˓");
const alice = bchjs.HDNode.derivePath(wallet, "m/44'/145'/0'/0/0");
const bob = bchjs.HDNode.derivePath(wallet, "m/44'/145'/1'/0/0");

const tip = new ExpiringTip({
alice: alice.toIdentifier(), // Ripemd160 hash of Alice's public key
bob: bob.toIdentifier() // Ripemd160 hash of Bob's public key

});

Once created, you can read the contract funding address and lookup for UTXOs (coins) that are locked in it. Also, a
field challengeSpecs contains definitions of challenges and their parameters.

console.log(tip.getAddress("mainnet"));
// bitcoincash:pppvx30pcylxzhewr6puknpuvz7gjjtl4sdw4ezcnp

const coins = await tip.findCoins("mainnet");

(continues on next page)

9.5. Instantiating contracts 29

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

Spedn Documentation, Release 0.2.0

(continued from previous page)

// Array(2) [.....]

console.log(tip.challengeSpecs);
// Object {receive: Object, revoke: Object}
console.log(tip.challengeSpecs.receive);
// Object {sig: "Sig", pubKey: "PubKey"}

9.6 Spending coins

To spend coins, use TxBuilder. Provide tx inputs with from method and outputs with to method. Optionally, set
a timelock with withTimelock. To send the transaction to the network use broadcast method. If you just want
to build the transaction without broadcasting it, use build method.

from method accept a single coin or an array of coins as a first parameter. Because you can’t (in most cases) sign
the input without defining all the inputs and outputs first, from method does not simply accept scriptSig parame-
ter. Instead, it accepts a SigningCallback function and the actual signing is deferred to the moment of calling
build/broadcast.

SigningCallback accepts 2 parameters. The first one is an object containing contract challenges. The second one
is a SigningContext which provides methods necessary for signing:

• sign(keyPair, hashType) - generates a siggnature valid for OP_CHECKSIG.

• signData(keyPair, data) - generates a signature valid for OP_CHECKDATASIG.

• preimage(hashType) - generates the same preimage as one used by sign(keyPair, hashType)
(useful for OP_CHECKDATASIG covenants).

Note that methods accepting hashType always add SIGHASH_FORKID flag so you don’t need to specify it explic-
itly.

to method accepts an address or a scriptPubKey buffer as its first argument and an amount (in satoshis) as the second
one. You can also omit the amount at a single output - in this case, TxBuilder will treat this output as a change
address and automatically calculate its amount choosing optimal transaction fee.

In the following example, all the previously found coins are spent using receive challenge but 5mBCH goes to
Bob’s new address and the rest goes back to Alice.

import { SigHash } from "@spedn/rts";

const txid = await new TxBuilder(rts)
.from(coins, (input, context) =>

input.receive({
sig: context.sign(bob.keyPair, SigHash.SIGHASH_ALL),
pubKey: bob.toPublicKey()

})
)
.to("bitcoincash:qrc2jhalczuka8q3dvk0g8mnkqx79wxp9gvvqvg7qt", 500000)
.to(alice.getAddress())
.withTimelock(567654)
.broadcast();

30 Chapter 9. BCH-JS Integration

https://www.bitcoincash.org/spec/replay-protected-sighash.html#specification

Spedn Documentation, Release 0.2.0

9.6.1 Spending ordinary P2PKH

Spedn SDK provides also a class P2PKH which is a representation of an ordinary Pay to Public Key Hash address.
You can instantiate it with a public key hash buffer or several factory methods:

import { P2PKH, P2PKHFactory } from "@spedn/rts";

const factory = new P2PKHFactory(rts);

let addr = new P2PKH(rts, bob.getIdentifier());
addr = factory.fromKeyPair(bob.keyPair);
addr = factory.fromPubKey(bob.toPublicKey());
addr = factory.fromAddress(bob.toCashAddress());
// all the above are equivalent

P2PKH contracts can be spent just like any other contract - they have spend({sig, pubKey}) challenge, but
you can also replace the whole signing callback with a convenient helper signWith(keyPair). Let’s modify the
previous example to spend additional input.

import { signWith } from "@spedn/rts";

const bobsCoins = await addr.findCoins("mainnet");

const txid = await new TxBuilder("mainnet")
.from(coins, (input, context) =>

input.receive({
sig: context.sign(bob.keyPair, SigHash.SIGHASH_ALL),
pubKey: bob.tpPublicKey()

})
)
.from(bobsCoins[14], signWith(bob.keyPair))
.to("bitcoincash:qrc2jhalczuka8q3dvk0g8mnkqx79wxp9gvvqvg7qt", 500000)
.to(alice.toCashAddress())
.withTimelock(567654)
.broadcast();

9.6.2 Spending generic P2SH

Spedn SDK provides also a class GenericP2SH for interoperability with any Pay to Script Hash contract created
without Spedn. To work with that kind of contract, you just need to know its redeemScript and what arguments it
expects. The generated class will have a single challenge spend with parameter requirements as specified in the
constructor.

import { GenericP2SH } from "@spedn/rts";

const contract = new GenericP2SH(redeemScriptBuffer, { sig: "Sig", someNumber: "int" }
→˓);

9.6. Spending coins 31

Spedn Documentation, Release 0.2.0

32 Chapter 9. BCH-JS Integration

CHAPTER 10

BITBOX Integration

Spedn is available for NodeJS developers as set of libraries extending capabilities of BITBOX SDK or other libraries.
TypeScript type definitions are provided out of the box.

Spedn provides 3 components installed separately:

• CLI (Command Line Interface) - allows to compile Spedn contracts.

• RTS (Runtime System) - allows to use compiled contracts in your app.

• SDK (Software Development Kit) - allows to compile Spedn contracts in your app.

10.1 Installation

To install Spedn RTS with BITBOX integration in your JS project, type:

npm i @spedn/rts-bitbox
or
yarn add @spedn/rts-bitbox

To install Spedn SDK in your JS project, type:

npm i @spedn/sdk
or
yarn add @spedn/sdk

NodeJS v11 or newer is required for SDK. You can also use v10 but then Worker Threads feature has to be explicitly
enabled by --experimental-worker flag.

10.2 Compiler service

Spedn compiler runs as a service in a worker thread that you can start, use and dispose with Spedn class.

33

https://nodejs.org/
https://developer.bitcoin.com/bitbox
https://www.typescriptlang.org/
https://nodejs.org/docs/latest-v12.x/api/worker_threads.html

Spedn Documentation, Release 0.2.0

import { Spedn } from "@spedn/sdk";

async function main() {

const compiler = new Spedn();
/* use compiler */
compiler.dispose();

}
main();

Instead of manually disposing the service you can also wrap the code in the using function inspired by some lan-
guages, which guarantees automatic disposal of a resource also in case of exceptions. It can also return a value

import { Spedn, using } from "@spedn/sdk";

async main() {

await using(new Spedn(), async compiler => {
/* use compiler */

});

}
main();

10.3 Runtime

Spedn RTS provides a way to interact with compiled smart contracts and with the blockchain via an adapter of an
external library, in this case - BITBOX-SDK.

You can use the default BITBOX instance for mainnet or provide a customized one.

import { BitboxRts } from "@spedn/rts-bitbox";
import { BITBOX } from "bitbox-sdk";

const rts = new BitboxRts("mainnet");
const testRts = new BitboxRts("testnet", new BITBOX({ restURL: "https://tapi.
→˓fullstack.cash/v3/" }));

10.4 Compiling modules

To compile a source file use compileFile method, optionally providing an rts. To compile source code in a string,
use compileCode.

const BlindEscrowPortableModule = await compiler.compileFile("./BlindEscrow.spedn");

const { ExpiringTip } = await compiler.compileCode(::`
contract ExpiringTip(Ripemd160 alice, Ripemd160 bob) {

challenge receive(Sig sig, PubKey pubKey) {
verify hash160(pubKey) == bob;
verify checkSig(sig, pubKey);

}

(continues on next page)

34 Chapter 10. BITBOX Integration

Spedn Documentation, Release 0.2.0

(continued from previous page)

challenge revoke(Sig sig, PubKey pubKey) {
verify checkSequence(7d);
verify hash160(pubKey) == alice;
verify checkSig(sig, pubKey);

}
}

`, rts);

The output of those methods depends on whether you provided RTS or not. If so, you’ll get an activated module
containing smart contract classes ready to instantiate. Static field params in the class describes what parameters are
required to instantiate it.

console.log(ExpiringTip.params);
// Object {alice: "Ripemd160", bob: "Ripemd160"}

If RTS is not provided, the method returns a portable module that can be saved to a JSON file or activated later.

import { readFileSync, writeFileSync } from "fs";

writeFileSync("blind_escrow.json", JSON.stringify(BlindEscrowPortableModule));

const mod = rts.load(BlindEscrowPortableModule);

10.5 Instantiating contracts

To instantiate the template, just create an object of the contract class, providing parameters values. Parameters are
passed as an object literal explicitly assigning values by names. Values of bool and int Spedn type can be passed
as ordinary JS booleans and numbers. Time and TimeSpan are also passed as numbers (see BIP65 and BIP112 for
value interpretation details). All the other types should be passed as JS Buffer.

In case of ExpiringTip you’ll need 2 public keys which you can generate with BITBOX.

import { BITBOX } from "bitbox-sdk";

const bitbox = new BITBOX();
const mnemonic = "draw parade crater busy book swim soldier tragic exit feel top civil
→˓";
const wallet = bitbox.HDNode.fromSeed(bitbox.Mnemonic.toSeed(mnemonic));
const alice = bitbox.HDNode.derivePath(wallet, "m/44'/145'/0'/0/0");
const bob = bitbox.HDNode.derivePath(wallet, "m/44'/145'/1'/0/0");

const tip = new ExpiringTip({
alice: alice.getIdentifier(), // Ripemd160 hash of Alice's public key
bob: bob.getIdentifier() // Ripemd160 hash of Bob's public key

});

Once created, you can read the contract funding address and lookup for UTXOs (coins) that are locked in it. Also, a
field challengeSpecs contains definitions of challenges and their parameters.

console.log(tip.getAddress("mainnet"));
// bitcoincash:pppvx30pcylxzhewr6puknpuvz7gjjtl4sdw4ezcnp

const coins = await tip.findCoins("mainnet");
// Array(2) [.....]

(continues on next page)

10.5. Instantiating contracts 35

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

Spedn Documentation, Release 0.2.0

(continued from previous page)

console.log(tip.challengeSpecs);
// Object {receive: Object, revoke: Object}
console.log(tip.challengeSpecs.receive);
// Object {sig: "Sig", pubKey: "PubKey"}

10.6 Spending coins

To spend coins, use TxBuilder. Provide tx inputs with from method and outputs with to method. Optionally, set
a timelock with withTimelock. To send the transaction to the network use broadcast method. If you just want
to build the transaction without broadcasting it, use build method.

from method accept a single coin or an array of coins as a first parameter. Because you can’t (in most cases) sign
the input without defining all the inputs and outputs first, from method does not simply accept scriptSig parame-
ter. Instead, it accepts a SigningCallback function and the actual signing is deferred to the moment of calling
build/broadcast.

SigningCallback accepts 2 parameters. The first one is an object containing contract challenges. The second one
is a SigningContext which provides methods necessary for signing:

• sign(keyPair, hashType) - generates a siggnature valid for OP_CHECKSIG.

• signData(keyPair, data) - generates a signature valid for OP_CHECKDATASIG.

• preimage(hashType) - generates the same preimage as one used by sign(keyPair, hashType)
(useful for OP_CHECKDATASIG covenants).

Note that methods accepting hashType always add SIGHASH_FORKID flag so you don’t need to specify it explic-
itly.

to method accepts an address or a scriptPubKey buffer as its first argument and an amount (in satoshis) as the second
one. You can also omit the amount at a single output - in this case, TxBuilder will treat this output as a change
address and automatically calculate its amount choosing optimal transaction fee.

In the following example, all the previously found coins are spent using receive challenge but 5mBCH goes to
Bob’s new address and the rest goes back to Alice.

import { SigHash } from "@spedn/rts";

const txid = await new TxBuilder(rts)
.from(coins, (input, context) =>

input.receive({
sig: context.sign(bob.keyPair, SigHash.SIGHASH_ALL),
pubKey: bob.getPublicKeyBuffer()

})
)
.to("bitcoincash:qrc2jhalczuka8q3dvk0g8mnkqx79wxp9gvvqvg7qt", 500000)
.to(alice.getAddress())
.withTimelock(567654)
.broadcast();

10.6.1 Spending ordinary P2PKH

Spedn SDK provides also a class P2PKH which is a representation of an ordinary Pay to Public Key Hash address.
You can instantiate it with a public key hash buffer or several factory methods:

36 Chapter 10. BITBOX Integration

https://www.bitcoincash.org/spec/replay-protected-sighash.html#specification

Spedn Documentation, Release 0.2.0

import { P2PKH, P2PKHFactory } from "@spedn/rts";

const factory = new P2PKHFactory(rts);

let addr = new P2PKH(rts, bob.getIdentifier());
addr = factory.fromKeyPair(bob.keyPair);
addr = factory.fromPubKey(bob.toPublicKey());
addr = factory.fromAddress(bob.toCashAddress());
// all the above are equivalent

P2PKH contracts can be spent just like any other contract - they have spend({sig, pubKey}) challenge, but
you can also replace the whole signing callback with a convenient helper signWith(keyPair). Let’s modify the
previous example to spend additional input.

import { signWith } from "@spedn/rts";

const bobsCoins = await addr.findCoins("mainnet");

const txid = await new TxBuilder("mainnet")
.from(coins, (input, context) =>

input.receive({
sig: context.sign(bob.keyPair, SigHash.SIGHASH_ALL),
pubKey: bob.getPublicKeyBuffer()

})
)
.from(bobsCoins[14], signWith(bob.keyPair))
.to("bitcoincash:qrc2jhalczuka8q3dvk0g8mnkqx79wxp9gvvqvg7qt", 500000)
.to(alice.getAddress())
.withTimelock(567654)
.broadcast();

10.6.2 Spending generic P2SH

Spedn SDK provides also a class GenericP2SH for interoperability with any Pay to Script Hash contract created
without Spedn. To work with that kind of contract, you just need to know its redeemScript and what arguments it
expects. The generated class will have a single challenge spend with parameter requirements as specified in the
constructor.

import { GenericP2SH } from "@spedn/rts";

const contract = new GenericP2SH(redeemScriptBuffer, { sig: "Sig", someNumber: "int" }
→˓);

10.6. Spending coins 37

Spedn Documentation, Release 0.2.0

38 Chapter 10. BITBOX Integration

CHAPTER 11

Zero Conf Forfeits

This example is based on /u/awemany’s proposal for securing 0-conf transactions. In addition to a regular payment
output and a change output we create also a forfeit output. The forfeit can be ordinarily spent by the customer which
would be nonsensical if he also wanted to doublespend. If the doublespend is actually attempted then the miner can
spend the forfeit by presenting a proof of that.

Read the details here or watch a presentation.

contract Forfeit(
Ripemd160 inputPKH, // a public key hash used to redeem the input in the

→˓payment tx
Ripemd160 customerPKH // a public key hash to be used to redeem the forfeit
) {

// This challenge is used by the customer to reclaim the forfeit.
// Basically, a typical P2PKH.
challenge ok(PubKey pubKey, Sig sig) {

verify hash160(pubKey) == customerPKH;
verify checkSig(sig, pubKey);

}

// This challenge can be used by a miner to claim the forfeit
// if he can prove there was a doublespend attempt.
challenge fraud(

DataSig paymentSig, // A signature used in payment transaction
[byte] paymentPayload, // Signed data from the transaction
DataSig doublespendSig, // Another signature taken from the doublespend

→˓attempt
[byte] doublespendPayload, // Signed data from the doublespend
PubKey pubKey // Public Key matching both signatures

) {
// If the provided PK matches the one from the payment input...
if (hash160(pubKey) == inputPKH) {

// verify the signature provided in that payment...
verify checkDataSig(paymentSig, paymentPayload, pubKey);

(continues on next page)

39

https://gist.github.com/awemany/619a5722d129dec25abf5de211d971bd
https://www.youtube.com/watch?v=EsddVkR-MSs

Spedn Documentation, Release 0.2.0

(continued from previous page)

// and that there was seen some other transaction which also validly
→˓signed that input...

verify checkDataSig(doublespendSig, doublespendPayload, pubKey);
} else {

// otherwise don't allow to spend it
fail;

}
}

}

40 Chapter 11. Zero Conf Forfeits

CHAPTER 12

ChainBet Protocol

ChainBet is a proposed Bitcoin Cash protocol to enable on-chain betting. You can read the details here.

The flow of the bet consists of several steps that can be expressed in Spedn.

12.1 Escrow Preparation

12.1.1 Alice Escrow Address

The main purpose of Alice’s escrow address is to reveal Alice’s Secret A when spent. It will require both Alice and
Bob’s signature plus the secret. By requiring the secret, it reveals it to Bob, thus fulfilling that part of the commitment
scheme.

Alternatively, Alice can retrieve the funds unilaterally after 8 confirmations in the situation when Bob abandonds the
betting process.

contract ChainBetAliceEscrow(PubKey alicePK, PubKey bobPK, Ripemd160 commitment) {

challenge cancel(Sig aliceSig) {
verify checkSequence(8b);
verify checkSig(aliceSig, alicePK);

}

challenge proceed(Sig aliceSig, Sig bobSig, bin secret) {
verify hash160(secret) == commitment;
verify checkMultiSig(0b11, [aliceSig, bobSig], [alicePK, bobPK]);

}
}

41

https://github.com/fyookball/ChainBet/blob/master/PROTOCOL.md

Spedn Documentation, Release 0.2.0

12.1.2 Bob Escrow Address

The main purpose of Bob’s escrow address is to prevent Bob from double spending. Once the funding transaction is
created, Alice’s secret will be revealed. If Bob sees that he has a loss, he could theoretically attempt to double spend
his input to the funding transaction, thereby invalidating it.

By first moving the funds into escrow and requiring Alice’s signature in addition to Bob’s to spend, Bob cannot on his
own attempt a doublespend.

Of course, it is necessary for the transaction that funds the escrow account to have at least 1 confirmation before the
funding transaction is attempted, because otherwise Bob could doublespend that, invalidating both itself and the child
transaction (the funding transaction).

Alternatively, Bob can also retrieve his own funds unilaterally after 8 confirmations in the situation when Alice aban-
donds the betting process.

contract ChainBetBobEscrow(PubKey alicePK, PubKey bobPK) {

challenge cancel(Sig bobSig) {
verify checkSequence(8b);
verify checkSig(bobSig, bobPK);

}

challenge proceed(Sig aliceSig, Sig bobSig) {
verify checkMultiSig([aliceSig, bobSig], [alicePK, bobPK]);

}
}

12.2 Phase 5: Funding Transaction

Alice should now have both of Bob’s signatures, so she can spend from both escrow addresses to create the (main)
funding transaction. lice should wait until both escrow transactions have at least one confirmation before broadcasting
the funding transaction. Otherwise, she risks a double spend attack where Bob learns her secret, discovers he has lost
the bet, and then tries to double spend the input to the Bob escrow account.

Using a shorthand notation where Alice’s Secret is “A” and the hash is “HASH_A”, and Bob’s Secret is “B” and its
hash is “HASH_B”, then we can say that the main P2SH address is a script that allows the funds to be spent if:

Alice can sign for her public key AND Hash(A)= HASH_A AND Hash(B)=HASH_B AND A+B is an odd number.

. . . or if Bob can sign for his public key AND Hash(A)= HASH_A AND Hash(B)=HASH_B AND A+B is an even
number.

. . . or if Alice can sign for her public key and the transaction is more than 4 blocks old.

contract Bet(
Ripemd160 aliceCommitment,
Ripemd160 bobCommitment,
PubKey alicePK,
PubKey bobPK) {

challenge odd([byte] aliceSecret, [byte] bobSecret, Sig aliceSig, bool cancel) {
if (!cancel) {

verify hash160(aliceSecret) == aliceCommitment;
verify hash160(bobSecret) == bobCommitment;

([byte;4] a, _) = aliceSecret @ 4;

(continues on next page)

42 Chapter 12. ChainBet Protocol

Spedn Documentation, Release 0.2.0

(continued from previous page)

([byte;4] b, _) = bobSecret @ 4;
verify (bin2num(a) + bin2num(b)) % 2 == 1;

}
else verify checkSequence(8b);

verify checkSig(aliceSig, alicePK);
}

challenge even([byte] aliceSecret, [byte] bobSecret, Sig bobSig) {
verify hash160(aliceSecret) == aliceCommitment;
verify hash160(bobSecret) == bobCommitment;

([byte;4] a, _) = aliceSecret @ 4;
([byte;4] b, _) = bobSecret @ 4;
verify (bin2num(a) + bin2num(b)) % 2 == 0;

verify checkSig(bobSig, bobPK);
}

}

12.2. Phase 5: Funding Transaction 43

Spedn Documentation, Release 0.2.0

44 Chapter 12. ChainBet Protocol

CHAPTER 13

Contributing

Every kind of contribution is appreciated, especially:

• Syntax ideas and other features suggestions

• Code review

• Unit tests

• Bug reports

• Usage examples and docs improvement

45

Spedn Documentation, Release 0.2.0

46 Chapter 13. Contributing

CHAPTER 14

Sponsorship

Single donation:

Regular donations:

47

Spedn Documentation, Release 0.2.0

48 Chapter 14. Sponsorship

CHAPTER 15

Contract

• Telegram Channel

• Issue tracker

• Twitter

49

https://t.me/bch_compilers
https://bitbucket.org/o-studio/spedn/issues?status=new&status=open
http://twitter.com/tendo_pein_sama

	Quick start guide
	Understanding Script
	Migration Guide
	Syntax overview
	Types
	Operators
	Functions
	Command-line Interface
	BCH-JS Integration
	BITBOX Integration
	Zero Conf Forfeits
	ChainBet Protocol
	Contributing
	Sponsorship
	Contract

