
Spedn Documentation

{o} Software

Apr 07, 2020

Getting Started:

1 Quick start guide 3

2 Understanding Script 5

3 Syntax overview 7

4 Types 11

5 Operators 15

6 Functions 17

7 Command-line Interface 21

8 BITBOX Integration 23

9 Zero Conf Forfeits 29

10 ChainBet Protocol 31

11 Roadmap 35

12 Contributing 37

13 Contract 39

i

ii

Spedn Documentation

Spedn is a high level smart contracts language for Bitcoin Cash. It is designed for explicitness and safety:

• It is statically typed - detects many errors at compile time

• It is explicitly typed - no guessing what the expression is supposed to return

• It is purely-functional - free of side effects, the common source of bugs

• It has a familiar C-like syntax

Warning: Spedn is an experimental tool. It is not recommended to be used on mainnet yet.

Getting Started: 1

Spedn Documentation

2 Getting Started:

CHAPTER 1

Quick start guide

1.1 Build from sources

1. Intsall Haskell Tool Stack.

2. Download Spedn sources.

$ git clone https://bitbucket.org/o-studio/spedn.git

3. Build and install Spedn.

$ cd spedn/spedn
$ stack install

1.2 Installation from npm

Alternatively, you can install a JavaScript version from npmjs repository:

$ npm i -g spedn-cli

1.3 Your first contract

Create a file mycontract.spedn with a following content:

contract ExpiringTip(Ripemd160 alice, Ripemd160 bob) {

challenge receive(Sig sig, PubKey pubKey) {
verify hash160(pubKey) == bob;
verify checkSig(sig, pubKey);

(continues on next page)

3

https://docs.haskellstack.org/en/stable/README/#how-to-install
https://bitbucket.org/o-studio/spedn/src

Spedn Documentation

(continued from previous page)

}

challenge revoke(Sig sig, PubKey pubKey) {
verify checkSequence(7d);
verify hash160(pubKey) == alice;
verify checkSig(sig, pubKey);

}
}

Compile with command:

$ spedn compile -c mycontract.spedn

You should get a compiled contract template similar to this:

<alice> <bob> 2 PICK TRUE EQUAL IF 3 PICK HASH160 OVER EQUALVERIFY (...)

1.4 Coming soon

Instantiating the template. Address generation. Redeeming.

4 Chapter 1. Quick start guide

CHAPTER 2

Understanding Script

Before developing contracts with Spedn it is worth understanding what they are compiled to and how Bitcoin Cash
transactions internally work.

2.1 There is no spoon. . .

From a user perspective it’s convenient to perceive a Bitcoin Cash address as a kind of account with a balance. But
this is just a nice abstraction over a mechanism that works in slightly more complicated way.

There is no account. Every transaction contains inputs and outputs. An output consists of an amount of bitcoins and a
script (often called scriptPubKey) specifying some spending conditions for that amount. An input is a reference
to some output of a previous transaction and some script (called scriptSig) satisfying the spending condition from
scriptPubKey. In a typical transaction, scriptPubKey contains a public key of a coin owner and scriptSig
contains a signature matching that public key - hence the names. An output that is not yet referenced by any other
transaction is called Unspent Transaction Output (UTXO).

A UTXO can be perceived as a lockbox containing a single coin.

An address is a user readable representation of a standard scriptPubKey.

2.2 Kinds of boxes

You can spot two kinds of addresses in Bitcoin Cash:

2.2.1 Pay To Public Key Hash (P2PKH)

This is an “ordinary” address representing a very simple script that checks two condidtions:

• If the public key provided in scriptSig matches the hash in scriptPubKey when hashed with SHA-256 and then
RIPEMD-160.

5

Spedn Documentation

• If the signature provided in scriptSig is valid for that key.

2.2.2 Pay To Script Hash (P2SH)

This is a “smart contract” address. Instead of public key hash it cointains a hash of an entire script that is called a
redeem script. The scriptSig is supposed to provide the actual script that matches this hash and arguments to it.

2.3 Making fancy boxes

All those scripts are bytecode that run in a stack machine. A human readable representation (assembly language) of
this bytecode is called. . . Script. Script is a FORTH-like, stack oriented language containing numerous opcodes, some
generic, some very Bitcoin-specific. It intentionally lacks support for recursion what guarantees that all scripts finish
(and even do so in deterministic time).

Writing scripts in Script is quite hard. This is why Spedn was created. It’s a high level language that compiles to
Script. Contracts written in Spedn represent redeem scripts for P2SH addresses.

6 Chapter 2. Understanding Script

CHAPTER 3

Syntax overview

3.1 Contract Templates

A contract template in Spedn represents a template for generating a P2SH address and corresponding redeem script. It
can be parametrized. Contract parameters have to be specified to instantiate it, that is - to generate a particular contract
with an address.

You can perceive a contract template as a specification of a pin tumbler lock mechanism while a contract is a particular
lock and parameters are pin lengths in it.

Syntax:

contract ContractName ([type paramName [, . . .]]) { }

Example:

contract SomeContract(Ripemd160 pubKeyHash, int x) {
// challenges

}

3.2 Challenges

A challenge is a set of conditions that have to be met to redeem a coin locked in a contract. Challenges specify
arguments that will be expected to be provided in scriptSig when redeeming the coin. A contract must contain at
least one challenge and a challenge must define at least one argument. Challenges must have unique names.

A challenge introduces a lexical scope so two different challenges can define an argument with the same name.

When redeeming a coin, a redeemer must choose one of the challenges and satisfy its conditions.

You can perceive a challenge as a keyhole in a lock and arguments as keys.

Syntax:

challenge name (type argName [, . . .] **) statement **

7

Spedn Documentation

Example:

challenge someChallenge(PubKey pubKey, Sig signature) {
// statements...

}

3.3 Statements

A challenge can contain any number of statements. To be precise - it contains a single statement but this can be a block
statement which can contain any number of statements.

There are the following kinds of statements:

3.3.1 Verification

The most important statement and often the only one needed. It evaluates an expression and fails the script if the result
is false.

Syntax:

verify expr ;

Example:

verify hash1 == hash2;

3.3.2 Variable binding

You can define a local variable that will be accessible down in the same lexical scope and nested scopes.

Syntax:

type name = expr ;

Example:

int a = b + c;

There is also a possibility to define 2 variables in case of using the split operator. If one of the results is unnecessary,
you can ignore it with a low dash operator.

Syntax:

type [leftName , rightName] = expr1 @ expr2 ;

type [_, rightName] = expr1 @ expr2 ;

type [leftName , _] = expr1 @ expr2 ;

Example:

bin [prefix, _] = secret @ 4;

8 Chapter 3. Syntax overview

Spedn Documentation

3.3.3 Conditional

You can conditionaly execute a branch of code. A branch introduces a new lexical scope and it can be a verification,
block or another conditional.

Syntax:

if (condition) statement [else statement]

Example:

if (num % 2 == 1)
verify checkSig(sig, alice);

else
verify checkSig(sig, bob);

3.3.4 Block

A block is a statement that groups several statements for sequential execution. A block introduces a lexical scope. The
last statement must be a verification or conditional.

Syntax:

{ [statements. . .] }

Example:

if (num % 2 = 1) {
verify checkSig(sig, alice);

} else {
verify checkSig(sig, bob);
verify checkSequence(5d);

}

3.3.5 Loop

There are no loops, it’s Bitcoin.

3.4 Lexical scopes

Spedn creates common, nested lexical scopes for parameters, arguments, variables and functions. There can be no 2
identical names within the same scope. Also - name shadowing is prohibited so a nested scope cannot redefine a name
present in its parent scope.

There are following scopes in the nesting order:

• Global scope - contains predefined functions and type constructors

• Contract scope - introduced by the contract, contains contract parameters

• Challenge scope - introduced by the challenge, contains challenge arguments and local variables

• Local scope - introduced by if/else/block statements, contains local variables

Exhaustive example:

3.4. Lexical scopes 9

Spedn Documentation

// a global scope, names like checkSig, min, max are reserved.

// contract scope begins
contract X(int a, int b) { // names a, b are defined

// challenge scope begins
challenge a(// it's OK for the challenge to be named a because challenge names

→˓don't occupy the name table.
int c // name c is defined
/* int a // BAD - already defined in contract scope */)

{
verify a >= b;
/* verify a == d // BAD - d is not yet defined */
int d = a + b; // name d is defined
if (d > 0)
// if scope begins
{

int e = d % c;
verify e == 0;

}
// if scope ends; e is gone.
else
// else scope begins

verify a == b;
// else scope ends
/* verify e == 1 // BAD - e is gone */

}
// challenge scope ends; c, d are gone

// challenge scope begins
challenge b(int c, int d) // names c, d are defined
{

verify c == d;
}
// challenge scope ends; c, d are gone

}
// contract scope ends; a, b are gone

10 Chapter 3. Syntax overview

CHAPTER 4

Types

4.1 Basic Types

Basic types reflect types Script operates on.

• bool - a boolean value. Can be either true or false. verify and if statements expect an expression
returning this type.

• int - a 32-bit signed integer. Literals of this type can be specified in dec or hex.

int a = -1234;
int b = 0xff00i; // notice `i` suffix

• bin - an array of bytes. Literals of this type are specified in hex.

bin arr = 0x11223344556677889900aabbccddeeff;

4.2 Domain-Spcecific Types

To increase safety, Spedn introduces meaningful types that help with catching semantic errors at compile time.

4.2.1 Numeric types

These types add meaning to a raw int. They must be explicitly casted from int with a type constructor. They cannot
be casted back to int.

• Time - represents an absolute time. Can be expressed as a Unix Timestamp or a Block Height and variously
defined.

11

Spedn Documentation

Time x = `2018-10-13 21:37:00`; // defined with a time literal
Time y = TimeStamp(1539466620); // conversion from `int` interpreted as Unix
→˓Timestamp
Time z = TimeStamp(584834); // conversion from `int` interpreted as Block
→˓Height

• TimeSpan - represents a relative time period. Can be expressed as a number of blocks or 512-seconds periods.

TimeSpan x = 1d 2h 3m 4s; // Time units literal. Be awre that the number
→˓will be rounded down to full 512s periods
TimeSpan y = 10b; // Blocks literal.
TimeSpan z = Blocks(10); // Conversion from `int`

4.2.2 Binary types

These types add meaning to a raw bin. They can be implicitly casted to bin. They must be explicitly casted from
bin with a type constructor.

• PubKey - represents a public key.

PubKey alice = PubKey(0x11223344556677889900aabbccddeeff);

• Sig - represents a tx signature (which can be checked with checkSig).

Sig alice = Sig(0x11223344556677889900aabbccddeeff);
verify checkSig(alice, alicePubKey);

• DataSig - represents a data signature (which can be checked with checkDataSig).

DataSig alice = DataSig(0x11223344556677889900aabbccddee);
verify checkDataSig(alice, preimageHash, alicePubKey);

• Ripemd160 - represents a result of RIPEMD-160 hash.

Ripemd160 h = hash160(pubKey);

• Sha1 - represents a result of SHA-1 hash.

Sha1 x = sha1(secret);

• Sha256 - represents a result of SHA-256 hash.

Sha256 x = hash256(secret);

4.2.3 Special types

These are types that can appear in expressions but you cannot define variables of them.

• List - can be only created as literals passed to functions that expect them, which is currently
checkMultiSig only.

verify checkMultiSig([sig1, sig2], [key1, key1]);

• Verification - almost like bool but the only thing you can do with it is to pass it to verify. This is a re-
turn type of checkLockTime and checkSequence functions.:

12 Chapter 4. Types

Spedn Documentation

verify checkSequence(8b);

4.2. Domain-Spcecific Types 13

Spedn Documentation

14 Chapter 4. Types

CHAPTER 5

Operators

Precedence Operator Description Associativity
1 -a Unary minus right to left
1 !a Logical NOT right to left
2 a / b Integer division left to right
2 a % b Modulo left to right
3 a + b Integer addition left to right
3 a - b Integer subtraction left to right
4 a . b bytes arrays concatenation left to right
5 a < b Less than left to right
5 a <= b Less than or equal left to right
5 a > b Greater than left to right
5 a >= b Greater than or equal left to right
6 a == b Equal left to right
6 a != b Not equal left to right
6 a === b Numeric and equal left to right
6 a !== b Numeric and not equal left to right
7 a & b Bitwise AND left to right
8 a ^ b Bitwise XOR left to right
9 a | b Bitwise OR left to right
10 a && b Bolean AND

Note: Both a and b are always evaluated.
left to right

11 a || b Boolean OR
Note: Both a and b are always evaluated.

left to right

12 a @ b Split bytes array a at position b. none

15

Spedn Documentation

16 Chapter 5. Operators

CHAPTER 6

Functions

6.1 Math Functions

• int abs(int a)

Returns an absolute value of the argument.

• int min(int a, int b)

Returns the smaller argument.

• int max(int a, int b)

Returns the larger argument.

• bool within(int x, int min, int max)

Returns true if x >= min && x < max.

6.2 Hashing Functions

• Ripemd160 ripemd160(bin bytes)

Returns a RIPEMD-160 hash of the argument.

• Sha1 sha1(bin bytes)

Returns a SHA-1 hash of the argument.

• Sha256 sha256(bin bytes)

Returns a SHA-256 hash of the argument.

• Ripemd160 hash160(bin bytes)

Returns RIPEMD-160 hash of SHA-256 hash of the argument.

17

Spedn Documentation

• Sha256 hash256(bin bytes)

Returns double SHA-256 hash of the argument.

6.3 Cryptographic Checks

• bool checkSig(Sig sig, PubKey pk)

Validates a transaction signature sig againnst a public key pk.

• bool checkMultiSig(List<Sig> sigs, List<PubKey> pks)

Validates the set of signatures against the set of public keys.

• bool checkDataSig(DataSig sig, bin msg, PubKey pk)

Validates a signature sig of an arbitrary message msg against a public key pk.

6.4 Timelock Checks

• Verification checkLockTime(Time t)

Validates whether the spending transaction occurs after time t, expressed as a block height or a timestamp.

• Verification checkSequence(TimeSpan duration)

Validates whether the spending transaction happens after duration relative to the locking transaction, ex-
pressed as a number of blocks or number of 512 seconds-long periods.

6.5 Array Operations

• bin num2bin(int num, int size)

Converts a number num into a bytes array of size size.

• int bin2num(bin data)

Converts a bytes array data to an integer. The array is treated as little-endian.

• int size(bin data)

Returns the length of data.

• bin fst([bin, bin] data)

Returns the first element of a tuple (result of @ operator).

bin left = fst(0xaabbccdd @ 2);
// left == 0xaabb

• bin snd([bin, bin] data)

Returns the second element of a tuple (result of @ operator).

bin right = snd(0xaabbccdd @ 2);
// right == 0xccdd

18 Chapter 6. Functions

Spedn Documentation

• DataSig toDataSig(Sig data)

Converts a signature suitable for checkSig function (with a sighash flag) to a signature suitable for
checkDataSig function (without a sighash flag).

verify checkSig(sig, pubKey);
verify checkDataSig(toDataSig(sig), preimageHash, pubKey);

6.6 Type Constructors

• PubKey PubKey(bin data)

• Ripemd160 Ripemd160(bin data)

• Sha1 Sha1(bin data)

• Sha256 Sha256(bin data)

• Sig Sig(bin data)

• DataSig DataSig(bin data)

• Time TimeStamp(int timestamp)

• Time TimeStamp(int blockHeight)

• TimeSpan Blocks(int number)

6.6. Type Constructors 19

Spedn Documentation

20 Chapter 6. Functions

CHAPTER 7

Command-line Interface

The general syntax is:

$ spedn COMMAND args

7.1 Compiling

To compile a contract to opcodes, use:

$ spedn compile -c MyContract.spedn

If the contract contains parameters, a template with placeholders will be generated. To instantiate the contract with
particular parameter values, provide them as key=value pairs after --. For example, assuming MyContract has
alicePHK parameter of type Ripemd160 and delay parameter of type TimeSpan, you can use the following:

$ spedn compile -c MyContract.spedn --
→˓alicePKH=0xb08f0f859f53873e8f02f6c0a8290a53e76a2e0a delay=1d1h

To compile a contract to a hex representation, use:

$ spedn compile -h -c MyContract.spedn --
→˓alicePKH=0xb08f0f859f53873e8f02f6c0a8290a53e76a2e0a delay=1d1h

Note that in this case, the contract must be fully instantiated (all parameters values must be provided).

21

Spedn Documentation

22 Chapter 7. Command-line Interface

CHAPTER 8

BITBOX Integration

Spedn is available for NodeJS developers as an SDK extending capabilities of BITBOX SDK. TypeScript type defini-
tions are provided out of the box.

8.1 Installation

NodeJS v11 or newer is required. You can also use v10 but then Worker Threads feature has to be explicitly enabled
by --experimental-worker flag.

To install Spedn SDK in your JS project, type:

npm i spedn
or
yarn add spedn

8.2 Compiler service

Spedn compiler runs as a service in a worker thread that you can start, use and dispose with Spedn class.

import { Spedn } from "spedn";

async function main() {

const compiler = new Spedn();
/* use compiler */
compiler.dispose();

}
main();

23

https://nodejs.org/
https://developer.bitcoin.com/bitbox
https://www.typescriptlang.org/
https://nodejs.org/docs/latest-v12.x/api/worker_threads.html

Spedn Documentation

Instead of manually disposing the service you can also use using function inspired by some languages, which guar-
antees automatic disposal of a resource also in case of exceptions.

import { Spedn, using } from "spedn";

async main() {

await using(new Spedn(), async compiler => {
/* use compiler */

});

}
main();

8.3 Compiling contracts

To compile a source file use compileFile method. To compile source code in a string, use compileCode.

const BlindEscrow = await compiler.compileFile("./BlindEscrow.spedn");

const ExpiringTip = await compiler.compileCode(::`
contract ExpiringTip(Ripemd160 alice, Ripemd160 bob) {

challenge receive(Sig sig, PubKey pubKey) {
verify hash160(pubKey) == bob;
verify checkSig(sig, pubKey);

}
challenge revoke(Sig sig, PubKey pubKey) {

verify checkSequence(7d);
verify hash160(pubKey) == alice;
verify checkSig(sig, pubKey);

}
}

`);

The output of those methods is a JavaScript class representing a contract template. Static field params describes what
parameters are required to instantiate it.

console.log(ExpiringTip.params);
// Object {alice: "Ripemd160", bob: "Ripemd160"}

8.4 Instantiating contracts

To instantiate the template, just create an object of the contract class, providing parameters values. Parameters are
passed as an object literal explicitly assigning values by names. Values of bool and int Spedn type can be passed
as ordinary JS booleans and numbers. Time and TimeSpan are also passed as numbers (see BIP65 and BIP112 for
value interpretation details). All the other types should be passed as JS Buffer.

In case of ExpiringTip you’ll need 2 public keys which you can generate with BITBOX.

import { BITBOX } from "bitbox-sdk";

const bitbox = new BITBOX();
const mnemonic = "draw parade crater busy book swim soldier tragic exit feel top civil
→˓"; (continues on next page)

24 Chapter 8. BITBOX Integration

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

Spedn Documentation

(continued from previous page)

const wallet = bitbox.HDNode.fromSeed(bitbox.Mnemonic.toSeed(mnemonic));
const alice = bitbox.HDNode.derivePath(wallet, "m/44'/145'/0'/0/0");
const bob = bitbox.HDNode.derivePath(wallet, "m/44'/145'/1'/0/0");

const tip = new ExpiringTip({
alice: alice.getIdentifier(), // Ripemd160 hash of Alice's public key
bob: bob.getIdentifier() // Ripemd160 hash of Bob's public key

});

Once created, you can read the contract funding address and lookup for UTXOs (coins) that are locked in it. Also, a
field challengeSpecs contains definitions of challenges and their parameters.

console.log(tip.getAddress("mainnet"));
// bitcoincash:pppvx30pcylxzhewr6puknpuvz7gjjtl4sdw4ezcnp

const coins = await tip.findCoins("mainnet");
// Array(2) [.....]

console.log(tip.challengeSpecs);
// Object {receive: Object, revoke: Object}
console.log(tip.challengeSpecs.receive);
// Object {sig: "Sig", pubKey: "PubKey"}

8.5 Spending coins

To spend coins, use TxBuilder. Provide tx inputs with from method and outputs with to method. Optionally, set
a timelock with withTimelock. To send the transaction to the network use broadcast method. If you just want
to build the transaction without broadcasting it, use build method.

from method accept a single coin or an array of coins as a first parameter. Because you can’t (in most cases) sign
the input without defining all the inputs and outputs first, from method does not simply accept scriptSig parame-
ter. Instead, it accepts a SigningCallback function and the actual signing is deferred to the moment of calling
build/broadcast.

SigningCallback accepts 2 parameters. The first one is an object containing contract challenges. The second one
is a SigningContext which provides methods necessary for signing:

• sign(keyPair, hashType) - generates a siggnature valid for OP_CHECKSIG.

• signData(keyPair, data) - generates a signature valid for OP_CHECKDATASIG.

• preimage(hashType) - generates the same preimage as one used by sign(keyPair, hashType)
(useful for OP_CHECKDATASIG covenants).

Note that methods accepting hashType always add SIGHASH_FORKID flag so you don’t need to specify it explic-
itly.

to method accepts an address or a scriptPubKey buffer as its first argument and an amount (in satoshis) as the second
one. You can also omit the amount at a single output - in this case, TxBuilder will treat this output as a change
address and automatically calculate its amount choosing optimal transaction fee.

In the following example, all the previously found coins are spent using receive challenge but 5mBCH goes to
Bob’s new address and the rest goes back to Alice.

import { TxBuilder, SigHash } from "spedn";

(continues on next page)

8.5. Spending coins 25

https://www.bitcoincash.org/spec/replay-protected-sighash.html#specification

Spedn Documentation

(continued from previous page)

const txid = await new TxBuilder("mainnet")
.from(coins, (input, context) =>

input.receive({
sig: context.sign(bob.keyPair, SigHash.SIGHASH_ALL),
pubKey: bob.getPublicKeyBuffer()

})
)
.to("bitcoincash:qrc2jhalczuka8q3dvk0g8mnkqx79wxp9gvvqvg7qt", 500000)
.to(alice.getAddress())
.withTimelock(567654)
.broadcast();

8.5.1 Spending ordinary P2PKH

Spedn SDK provides also a class P2PKH which is a representation of an ordinary Pay to Public Key Hash address.
You can instantiate it with a public key hash buffer or several factory methods:

import { P2PKH } from "spedn";

let addr = new P2PKH(bob.getIdentifier());
addr = P2PKH.fromKeyPair(bob.keyPair);
addr = P2PKH.fromPubKey(bob.getPublicKeyBuffer());
addr = P2PKH.fromAddress(bob.getAddress());
// all the above are equivalent

P2PKH contracts can be spent just like any other contract - they have spend({sig, pubKey}) challenge, but
you can also replace the whole signing callback with a convenient helper signWith(keyPair). Let’s modify the
previous example to spend additional input.

import { signWith } from "spedn";

const bobsCoins = await addr.findCoins("mainnet");

const txid = await new TxBuilder("mainnet")
.from(coins, (input, context) =>

input.receive({
sig: context.sign(bob.keyPair, SigHash.SIGHASH_ALL),
pubKey: bob.getPublicKeyBuffer()

})
)
.from(bobsCoins[14], signWith(bob.keyPair))
.to("bitcoincash:qrc2jhalczuka8q3dvk0g8mnkqx79wxp9gvvqvg7qt", 500000)
.to(alice.getAddress())
.withTimelock(567654)
.broadcast();

8.5.2 Spending generic P2SH

Spedn SDK provides also a class GenericP2SH for interoperability with any Pay to Script Hash contract created
without Spedn. To work with that kind of contract, you just need to know its redeemScript and what arguments it
expects. The generated class will have a single challenge spend with parameter requirements as specified in the
constructor.

26 Chapter 8. BITBOX Integration

Spedn Documentation

import { GenericP2SH } from "spedn";

const contract = new GenericP2SH(redeemScriptBuffer, { sig: "Sig", someNumber: "int" }
→˓);

8.5. Spending coins 27

Spedn Documentation

28 Chapter 8. BITBOX Integration

CHAPTER 9

Zero Conf Forfeits

This example is based on /u/awemany’s proposal for securing 0-conf transactions. In addition to a regular payment
output and a change output we create also a forfeit output. The forfeit can be ordinarily spent by the customer which
would be nonsensical if he also wanted to doublespend. If the doublespend is actually attempted then the miner can
spend the forfeit by presenting a proof of that.

Read the details here or watch a presentation.

contract Forfeit(
Ripemd160 inputPKH, // a public key hash used to redeem the input in the

→˓payment tx
Ripemd160 customerPKH // a public key hash to be used to redeem the forfeit
) {

// This challenge is used by the customer to reclaim the forfeit.
// Basically, a typical P2PKH.
challenge ok(PubKey pubKey, Sig sig) {

verify hash160(pubKey) == customerPKH;
verify checkSig(sig, pubKey);

}

// This challenge can be used by a miner to claim the forfeit
// if he can prove there was a doublespend attempt.
challenge fraud(

Sig paymentSig, // A signature used in payment transaction
bin paymentPayload, // Signed data from the transaction
Sig doublespendSig, // Another signature taken from the doublespend

→˓attempt
bin doublespendPayload, // Signed data from the doublespend
PubKey pubKey // Public Key matching both signatures

) {
// If the provided PK matches the one from the payment input...
if (hash160(pubKey) == inputPKH) {

// verify the signature provided in that payment...
verify checkDataSig(paymentSig, paymentPayload, pubKey);

(continues on next page)

29

https://gist.github.com/awemany/619a5722d129dec25abf5de211d971bd
https://www.youtube.com/watch?v=EsddVkR-MSs

Spedn Documentation

(continued from previous page)

// and that there was seen some other transaction which also validly
→˓signed that input...

verify checkDataSig(doublespendSig, doublespendPayload, pubKey);
} else {

// otherwise don't allow to spend it
verify false;

}
}

}

30 Chapter 9. Zero Conf Forfeits

CHAPTER 10

ChainBet Protocol

ChainBet is a proposed Bitcoin Cash protocol to enable on-chain betting. You can read the details here.

The flow of the bet consists of several steps that can be expressed in Spedn.

10.1 Escrow Preparation

10.1.1 Alice Escrow Address

The main purpose of Alice’s escrow address is to reveal Alice’s Secret A when spent. It will require both Alice and
Bob’s signature plus the secret. By requiring the secret, it reveals it to Bob, thus fulfilling that part of the commitment
scheme.

Alternatively, Alice can retrieve the funds unilaterally after 8 confirmations in the situation when Bob abandonds the
betting process.

contract ChainBetAliceEscrow(PubKey alicePK, PubKey bobPK, Ripemd160 commitment) {

challenge cancel(Sig aliceSig) {
verify checkSequence(8b);
verify checkSig(aliceSig, alicePK);

}

challenge proceed(Sig aliceSig, Sig bobSig, bin secret) {
verify hash160(secret) == commitment;
verify checkMultiSig([aliceSig, bobSig], [alicePK, bobPK]);

}
}

31

https://github.com/fyookball/ChainBet/blob/master/PROTOCOL.md

Spedn Documentation

10.1.2 Bob Escrow Address

The main purpose of Bob’s escrow address is to prevent Bob from double spending. Once the funding transaction is
created, Alice’s secret will be revealed. If Bob sees that he has a loss, he could theoretically attempt to double spend
his input to the funding transaction, thereby invalidating it.

By first moving the funds into escrow and requiring Alice’s signature in addition to Bob’s to spend, Bob cannot on his
own attempt a doublespend.

Of course, it is necessary for the transaction that funds the escrow account to have at least 1 confirmation before the
funding transaction is attempted, because otherwise Bob could doublespend that, invalidating both itself and the child
transaction (the funding transaction).

Alternatively, Bob can also retrieve his own funds unilaterally after 8 confirmations in the situation when Alice aban-
donds the betting process.

contract ChainBetBobEscrow(PubKey alicePK, PubKey bobPK) {

challenge cancel(Sig bobSig) {
verify checkSequence(8b);
verify checkSig(bobSig, bobPK);

}

challenge proceed(Sig aliceSig, Sig bobSig) {
verify checkMultiSig([aliceSig, bobSig], [alicePK, bobPK]);

}
}

10.2 Phase 5: Funding Transaction

Alice should now have both of Bob’s signatures, so she can spend from both escrow addresses to create the (main)
funding transaction. lice should wait until both escrow transactions have at least one confirmation before broadcasting
the funding transaction. Otherwise, she risks a double spend attack where Bob learns her secret, discovers he has lost
the bet, and then tries to double spend the input to the Bob escrow account.

Using a shorthand notation where Alice’s Secret is “A” and the hash is “HASH_A”, and Bob’s Secret is “B” and its
hash is “HASH_B”, then we can say that the main P2SH address is a script that allows the funds to be spent if:

Alice can sign for her public key AND Hash(A)= HASH_A AND Hash(B)=HASH_B AND A+B is an odd number.

. . . or if Bob can sign for his public key AND Hash(A)= HASH_A AND Hash(B)=HASH_B AND A+B is an even
number.

. . . or if Alice can sign for her public key and the transaction is more than 4 blocks old.

contract Bet(
Ripemd160 aliceCommitment,
Ripemd160 bobCommitment,
PubKey alicePK,
PubKey bobPK) {

challenge odd(bin aliceSecret, bin bobSecret, Sig aliceSig, bool cancel) {
if (!cancel) {

verify hash160(aliceSecret) == aliceCommitment;
verify hash160(bobSecret) == bobCommitment;

bin [a, _] = aliceSecret @ 4;

(continues on next page)

32 Chapter 10. ChainBet Protocol

Spedn Documentation

(continued from previous page)

bin [b, _] = bobSecret @ 4;
verify (bin2num(a) + bin2num(b)) % 2 == 1;

}
else verify checkSequence(8b);

verify checkSig(aliceSig, alicePK);
}

challenge even(bin aliceSecret, bin bobSecret, Sig bobSig) {
verify hash160(aliceSecret) == aliceCommitment;
verify hash160(bobSecret) == bobCommitment;

bin [a, _] = aliceSecret @ 4;
bin [b, _] = bobSecret @ 4;
verify (bin2num(a) + bin2num(b)) % 2 == 0;

verify checkSig(bobSig, bobPK);
}

}

10.2. Phase 5: Funding Transaction 33

Spedn Documentation

34 Chapter 10. ChainBet Protocol

CHAPTER 11

Roadmap

Spedn is an early, experimental tool with a lot of plans:

• Macros

• Extended support for covenants and tx preimage introspection

• Compiled code optimizations

• IDE with a debugger

• . . . and more

Check out the Trello board to see what’s currently going on.

35

https://trello.com/b/u6vD1EWO/spedn

Spedn Documentation

36 Chapter 11. Roadmap

CHAPTER 12

Contributing

Every kind of contribution is appreciated, especially:

• Syntax ideas and other features propositions

• Code review

• Unit tests

• Bug reports

• Usage examples and docs improvement

37

Spedn Documentation

38 Chapter 12. Contributing

CHAPTER 13

Contract

• Telegram Channel

• Issue tracker

• #spedn-lang channel on Electron Cash Slack

• Twitter

39

https://t.me/bch_compilers
https://bitbucket.org/o-studio/spedn/issues?status=new&status=open
https://electroncash.slack.com/messages/CD81XT49X
http://twitter.com/tendo_pein_sama

	Quick start guide
	Understanding Script
	Syntax overview
	Types
	Operators
	Functions
	Command-line Interface
	BITBOX Integration
	Zero Conf Forfeits
	ChainBet Protocol
	Roadmap
	Contributing
	Contract

